Identification of Regulatory Modules in Time Series Gene Expression Data Using a Linear Time Biclustering Algorithm

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Linear Time Biclustering Algorithm for Time Series Gene Expression Data

Non-supervised machine learning methods have been used in the analysis of gene expression data obtained from microarray experiments. Recently, biclustering, a non-supervised approach that performs simultaneous clustering on the row and column dimensions of the data matrix, has been shown to be remarkably effective in a variety of applications. The goal of biclustering [1] is to find subgroups o...

متن کامل

Biclustering of time-lagged gene expression data using real number

Analysis of gene expression data can help to find the time-lagged co-regulation of gene cluster. However, existing method just solve the problem under the condition when the data is discrete number. In this paper, we propose efficient algorithm to indentify time-lagged co-regulated gene cluster based on real number.

متن کامل

e-CCC-Biclustering: Related work on biclustering algorithms for time series gene expression data

This document provides supplementary material describing related work on biclustering algorithms for time series gene expression data analysis. We describe in detail three state of the art biclustering approaches specifically design to discover biclusters in gene expression time series and identify their strengths and weaknesses.

متن کامل

a time-series analysis of the demand for life insurance in iran

با توجه به تجزیه و تحلیل داده ها ما دریافتیم که سطح درامد و تعداد نمایندگیها باتقاضای بیمه عمر رابطه مستقیم دارند و نرخ بهره و بار تکفل با تقاضای بیمه عمر رابطه عکس دارند

Identification of outliers types in multivariate time series using genetic algorithm

Multivariate time series data, often, modeled using vector autoregressive moving average (VARMA) model. But presence of outliers can violates the stationary assumption and may lead to wrong modeling, biased estimation of parameters and inaccurate prediction. Thus, detection of these points and how to deal properly with them, especially in relation to modeling and parameter estimation of VARMA m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE/ACM Transactions on Computational Biology and Bioinformatics

سال: 2010

ISSN: 1545-5963

DOI: 10.1109/tcbb.2008.34